

71M65XX
Energy Meter ICs

AB_65XX_006 APPLICATION BRIEF

TERIDIAN Application Brief 1/6

AUGUST 2007

Precautions for Interrupts
Meter code for both the 71M651X and 71M652X Energy Meter chip family services a multitude of interrupts while
not losing data. Carefully balancing the interrupt priorities and interrupt timing will achieve this goal. This
Application Brief describes the main concepts for interrupt processing.

Interrupts Serviced by the 80515
A brief look at the interrupt structure of the 80515, as shown in Figure 1, confirms the complexity of the interrupt
system required in a modern meter.

I E 0

External
Interrupt

Flags

R I1

T I 1

Internal
In terrupt

Flags
Source

> = 1

TF0

I N T 2

IE1

I N T 3

TF1

I N T 4

R I0

T I 0
> = 1

I N T 5

I N T 6

> = 1

IRCON.1
I 2FR

IRCON.2

I 3FR

IRCON.3

IRCON.4

IRCON.5

IEN0.7

IP1.0/
IP0.0

IP1.1/
IP0.1

IP1.2/
IP0.2

IP1.3/
IP0.3

IP1.4/
IP0.4

IP1.5/
IP0.5

In terrupt
Control

Regis ter

Priori ty
Ass ignment

Interrupt
Vec tor

P
ol

lin
g

S
eq

ue
nc

e

I n terrupt
Enable

Logic and
Polarity

Select ion

DIO

UART1
(optical)

Timer 0

Compar-
ators

Compar-
ators

DIO

Timer 1

CE_BUSY

UART0

EEPROM/
I2C

XFER_BUSY

RTC_1S

IEN0.0

IEN2.0

IEN0.1

IEN1.1

IEN0.2

IEN1.2

IEN0.3

IEN1.3

IEN0.4

IEN1.4

IEN1.5

Figure 1: Interrupt Structure of the 80515

AB_65XX_006 Precautions for Interrupts

TERIDIAN Application Brief 2/6

Internal and external interrupt sources have to be served, while no loss of data is permitted. It is easy to imagine
how the processing of one interrupt could “starve” other interrupts and lead to data loss. Careful assignment of
interrupt priorities and good interrupt processing techniques prevent lock-ups and data loss.

The following interrupts, as appearing in Figure 1 from top to bottom, are used in a typical meter based on the
TERIDIAN 71M651X and 71M652X architectures:

1) DIO (IE0 flag): This interrupt occurs when a state change happens to a DIO pin configured to generate
high-priority interrupts via its associated DIO_R register. Pulse counting is a typical application for this
interrupt, and pulses can appear with frequencies up to several hundred per second.

2) UART1 (RI1, TI1 flags): An interrupt occurs when a character has been sent or received via UART1,
which is typically used for optical communication at fairly low baud-rates (300bd).

3) TIMER0 (TF0 flag): This timer can be used to support so called software timers. A timer “tick” interrupt
may occur every milli-second.

4) Comparators (INT2 flag): Only the 71M6513 offers the V2 and V3 comparators, which might be used for
analog measuring or monitoring purposes. Events on these comparators are usually not very frequent.

5) DIO (IE1 flag): This is another interrupt caused by a transition of a DIO pin. In this case, a low-priority
interrupt is selected by the DIO_R register.

6) CE_BUSY (INT3 flag): This interrupt will occur every 396µs (with a default setting of MUX_DIV). The
MPU needs to service this interrupt in order to gain information on sag and other conditions contained in
the CE STATUS word.

7) TIMER1 (TF1 flag): Applications can have a separate timer, e.g. for delay functions required when
controlling EEPROM or RTC.

8) UART0 (RI0, TI0 flags): An interrupt occurs when a character has been sent or received via UART0,
which is typically used for communication with AMR, logging, calibration systems or other equipment. The
baud-rate used on UART0 may be fairly high (typically 9600bd).

9) EEPROM/I2C (INT5 flag): An interrupt occurs when an I2C operation, such as write, read, or reset has
been completed. Meters use this interface to store revenue data and other information in EEPROMs.
Many meters store revenue data routinely, e.g. once per day, while still metering. This means that the
EEPROM interrupts have to be processed in the presence of all other interrupts.

10) XFER_BUSY/RTC_1S (INT6 flag): These two sources trigger the most important interrupt of the meter.
XFER_BUSY signals to the MPU that the CE has collected energy information in the accumulation
interval that was just completed. The MPU cannot afford to lose the energy data, but fortunately this
interrupt occurs typically only every 999.76ms (with default settings for PRE_SAMPS and SUM_CYCLES).
Secondly, the CE holds the data valid until the end of the next accumulation interval, so XFER_BUSY
does not have to be served immediately. RTC_1S occurs when the RTC has completed one second.
RTC_1S and XFER_BUSY are not synchronized in any way, but they are OR-ed together into the INT6
flag. It is important to check both interrupt conditions in the interrupt service routine. Otherwise, a pending
RTC_1S interrupt can be overlooked when servicing the XFER_BUSY interrupt. Since the interrupt is
edge-sensitive, the next XFER_BUSY event would not generate an interrupt due to RTC_1S being 1 (see
TERIDIAN Application Brief AB_651X_001 for details on this issue).

AB_65XX_006 Precautions for Interrupts

TERIDIAN Application Brief 3/6

Interrupt Priority Settings
Priorities can be assigned to interrupts in groups, as shown in Table 2, using the IP0 (SFRA9) and IP1 (SFRB9)
registers of the 80515 MPU shown in Table 1.

IP1.x IP0.x Priority Level
0 0 Level0 (lowest)
0 1 Level1
1 0 Level2
1 1 Level3 (highest)

Table 1: Priority Levels

IP0/IP1 Bits Group Group Members
IP1.0, IP0.0 0 EXT0 RI1/TI1
IP1.1, IP0.1 1 TF0 - EXT2
IP1.2, IP0.2 2 EXT1 - EXT3
IP1.3, IP0.3 3 TF1 - EXT4
IP1.4, IP0.4 4 RI0/TI0 - EXT5
IP1.5, IP0.5 5 - - EXT6

Table 2: Groups of Priority

When examining the IP0 and IP1 registers in typical TERIDIAN Demo Code, we observe the bit pattern shown in
Table 3.

Group IP1 Bit Value IP0 Bit Value Resulting Level
0 IP1.0 1 IP0.0 0 2
1 IP1.1 0 IP0.1 0 0
2 IP1.2 1 IP0.2 1 3
3 IP1.3 0 IP0.3 0 0
4 IP1.4 1 IP0.4 0 2
5 IP1.5 0 IP0.5 1 1

Table 3: Bit Assignments for IP0 and IP1

This bit assignment reflects the interrupt priorities shown in Table 4.

Interrupt Routine Interrupt Group Priority
io_high_priority_isr EXT0 0 2
io_low_priority_isr EXT1 2 3
compare_falling_isr EXT2 1 0
ce_busy_isr EXT3 2 3
compare_rising_isr EXT4 3 0
eeprom_isr EXT5 4 2
xfer_busy_isr EXT6 (shared w/ RTC) 5 1
timer0_isr TF0 1 0
timer1_isr TF1 3 0
rtc_isr EXT6 (shared w/ XFER) 5 1
es0_isr RI0/TI0 0 2
es1_isr RI1/TI1 4 2

Table 4: Interrupt Service Routines

AB_65XX_006 Precautions for Interrupts

TERIDIAN Application Brief 4/6

The highest priority is assigned to CE_BUSY, along with EXT1, which happens to be in the same group. EXT0
(I/O), EXT5 (EEPROM/I2C), and the UARTs are next in line with priority 2, while XFER_BUSY and RTC_1S have
the next lower priority. To sum it up, fast or urgent interrupts need higher priority, but they also have to be
processed quickly.

Details on Interrupt Processing
In addition to selecting the proper interrupt priorities, it is important to observe the following precautions for the
processing of interrupts:

1) Since the memory transfers and comparisons associated with the processing of the CE STATUS word
(sag processing) tend to load down the MPU, the TERIDIAN Demo Code executes this type of processing
only once per every eight CE_BUSY interrupts. This means that sag bits are in the worst case discovered
after 3.1ms, which is still a very acceptable time frame for the processing of sag events.

2) While executing interrupt service routines, the TERIDIAN Demo Code uses the irq_disable() function
to disable all interrupts. Similarly, soon after completing an interrupt service routine, the Demo Code uses
the irq_enable() function to enable interrupts. This technique works efficiently and prevents “starving“
of interrupts.

3) IP0 and IP1 should be set only once, preferably near the start of initialization, and then never changed
again. Changing IP0 and IP1 during meter program execution can have undesired effects.

4) “Critical” code regions should be protected from being interrupted. Critical regions are code sequences
that fail if they are interrupted. For example, in
variable |= mask;
the instructions that read variable and write variable could be interrupted by code that overwrites
variable causing incorrect operation. Another example is the code that accesses CE RAM, as shown
below in the ce_busy_isr() service routine. CE RAM is accessed in multiples of four bytes. If an inter-
rupt separates the operation (read or write) before the fourth byte is completed, the data will be corrupted,
because the unprocessed bytes may have changed when the unfinished code resumes.

5) All interrupt service routines and the routines called by them must be reentrant.

6) Priority inversion happens when a lower-priority interrupt prevents a higher-priority interrupt from finishing
in a timely manner. One common cause in meter code is the attempt to protect critical regions by disab-
ling interrupts individually. It can occur that the code that enables a high-priority interrupt has to wait in the
main loop for a low-priority (but enabled) interrupt to complete. The cure in this case is to leave individual
interrupts enabled, and disable all interrupts (wtih EA) briefly (less than 100µs) for critical regions. The
listing of irq.c below shows an example for this technique.

AB_65XX_006 Precautions for Interrupts

TERIDIAN Application Brief 5/6

Example Source Files
irq.c is listed below:
#include "options.h"
#include "api.h"

/*** Private variables declared within this module ***/
// This uses less space than a system that places the interrupt state on the stack.
// This is almost as fast, when reentrant variables are used (as they often must be).
Bbool irq_state = 1; // the "outer" state of a nested set of states.
U08 nest_cnt = 0; // counts nesting of interrupt-disable calls

// This routine should be called at the start of a critical region.
// It disables the interrupt state, and can be called from nested subroutine calls.
#pragma save
#pragma NOAREGS
void irq_disable (void) small reentrant
{
 // local variable of a reentrant fn is mutex-safe
 register U08 ea_temp;
 ea_temp = EA; // copy the interrupt state
 EA = FALSE; // disable all interrupts
 // The increment is done while interrupts are disabled,
 // and is therefore reentrant and mutex-safe, even though it uses
 // a global variable.
 if (nest_cnt++ == 0) // if at the outer call, save the state
 {
 irq_state = ea_temp;
 }
 // otherwise, the interrupt state is managed- discard it.
}
#pragma restore

// This routine should be called at the end of a critical region.
// It restore the interrupt state, and can be called
// from nested subroutine calls.
#pragma save
#pragma NOAREGS
void irq_enable (void) small reentrant
{
 // The decrement is done while interrupts are disabled,
 // and is therefore reentrant and mutex-safe.
 if (--nest_cnt == 0) // if at the outer call, restore the state
 {
 EA = irq_state; // restore the saved interrupt state
 }
 // otherwise, the interrupt state is nested, and should
 // remain disabled.
}
#pragma restore

void irq_init (void)
{
 EA = FALSE; // assure that interrupts start disabled
 irq_state = TRUE; // and will resume as enabled
 nest_cnt = 1; // from an unbalanced first call of irq_enable ()
}

Listing of irq.h:
// Disable interrupts; nestable and reentrant
void irq_disable (void) small reentrant;
// Enable interrupts; nestable and reentrant
void irq_enable (void) small reentrant;
// Sets up for the above; should be called early in initialization.
void irq_init (void);

// Use less time, more space, an incompatible scheme
#define IRQ_DEFINES U08 ea = EA
#define IRQ_DISABLE() EA = FALSE
#define IRQ_ENABLE() EA = ea

AB_65XX_006 Precautions for Interrupts

TERIDIAN Application Brief 6/6

ce_busy_isr() Interrupt Routine from ce.c:
// Runs 396us after the XREF_BUSY_INT, to alternate the polarity of the chop on VRef.
// If sag detection is enabled, runs every 396us
#pragma save
#pragma NOAREGS
void ce_busy_isr (void) small reentrant
{
 CE2 = (CE2 & ~CHOP_EN) | CHOP_EN; // start hardware chop on next cycle
 #if 1 == SAG_DETECT // 1 = rapid sag detection, flag from reg651x.h
 // this code is run less often in order to reduce the real-time
 // cost of running this interrupt.
 if (sag_decimation <= 0)
 {
 #define ea 1
 U08 ck = CKCON;
 sag_decimation = 6; // run every 6*396us = 2.4ms
 // read the compute engine's sag bits from its status register
 CE_BEGIN_CRITICAL_SECTION; // Disable CE interrupts.
 CLK_STRETCH; // Change stretch to '6' equivalent.
 // read the CE status's sag bits
 sag_data = *((U08x *)&CE.Outputs.O_cestatus);
 CLK_RELAX; // Back to default value.
 CE_END_CRITICAL_SECTION;
 #undef ea
 *(U08 xdata *)&Status = sag_data; // save to the meter's status word
 // Are the compute-engine's sag detection bits set for all the phases
 // that power the meter? (POWERED_PHASE is in options.h)
 if ((sag_data & POWERED_PHASE) == POWERED_PHASE)
 {
 // Save when the power fails, not when it is off.
 if (meter_had_power)
 {
 EA = 0; // disable interrupts
 // mark the data save with hardware
 // OSCOPE_INIT;
 // OSCOPE_TOGGLE;
 RESET_WD(); // push off the hardware watchdog
 meter_had_power = FALSE;
 // save the data to EEPROM (this operation is not reentrant)
 memcpy_px (
 EEPROM_REGISTERS,
 (U08x*)&Totals.Acc, // The start of the data
 (2*sizeof(struct Accumulators_t))); // save two copies
 // OSCOPE_TOGGLE;
 Soft_Reset(); // recover from nonreentrant code
 for(;;); // make it impossible to pass this point
 }
 }
 }
 else
 {
 sag_decimation--;
 }
 #else // if no rapid sag detection is needed
 EX_CE_BUSY = 0; // disable this interrupt until the next xfer_busy ISR
 #endif

This product is sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to
warranty, patent infringement and limitation of liability. TERIDIAN Semiconductor Corporation (TSC) reserves the right to make changes in
specifications at any time without notice. Accordingly, the reader is cautioned to verify that the information is current before placing orders.
TERIDIAN assumes no liability for applications assistance.

TERIDIAN Semiconductor Corp., 6440 Oak Canyon Rd., Irvine, CA 92618

TEL (714) 508-8800, FAX (714) 508-8877, http://www.teridian.com

© 2004-2007 TERIDIAN Semiconductor Corporation 8/3/07 – REV 1.0

